Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen.

Identifieur interne : 004603 ( Main/Exploration ); précédent : 004602; suivant : 004604

Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen.

Auteurs : Yu-Ying Kao [États-Unis] ; Scott A. Harding ; Chung-Jui Tsai

Source :

RBID : pubmed:12376645

Descripteurs français

English descriptors

Abstract

Lignins, along with condensed tannins (CTs) and salicylate-derived phenolic glycosides, constitute potentially large phenylpropanoid carbon sinks in tissues of quaking aspen (Populus tremuloides Michx.). Metabolic commitment to each of these sinks varies during development and adaptation, and depends on L-phenylalanine ammonia-lyase (PAL), an enzyme catalyzing the deamination of L-phenylalanine to initiate phenylpropanoid metabolism. In Populus spp., PAL is encoded by multiple genes whose expression has been associated with lignification in primary and secondary tissues. We now report cloning two differentially expressed PAL cDNAs that exhibit distinct spatial associations with CT and lignin biosynthesis in developing shoot and root tissues of aspen. PtPAL1 was expressed in certain CT-accumulating, non-lignifying cells of stems, leaves, and roots, and the pattern of PtPAL1 expression varied coordinately with that of CT accumulation along the primary to secondary growth transition in stems. PtPAL2 was expressed in heavily lignified structural cells of shoots, but was also expressed in non-lignifying cells of root tips. Evidence of a role for Pt4CL2, encoding 4-coumarate:coenzyme A ligase, in determining CT sink strength was gained from cellular co-expression analysis with PAL1 and CTs, and from experiments in which leaf wounding increased PAL1 and 4CL2 expression as well as the relative allocation of carbon to CT with respect to phenolic glycoside, the dominant phenolic sink in aspen leaves. Leaf wounding also increased PAL2 and lignin pathway gene expression, but to a smaller extent. The absence of PAL2 in most CT-accumulating cells provides in situ support for the idea that PAL isoforms function in specific metabolic milieus.

DOI: 10.1104/pp.006262
PubMed: 12376645
PubMed Central: PMC166607


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen.</title>
<author>
<name sortKey="Kao, Yu Ying" sort="Kao, Yu Ying" uniqKey="Kao Y" first="Yu-Ying" last="Kao">Yu-Ying Kao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:12376645</idno>
<idno type="pmid">12376645</idno>
<idno type="doi">10.1104/pp.006262</idno>
<idno type="pmc">PMC166607</idno>
<idno type="wicri:Area/Main/Corpus">004593</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004593</idno>
<idno type="wicri:Area/Main/Curation">004593</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004593</idno>
<idno type="wicri:Area/Main/Exploration">004593</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen.</title>
<author>
<name sortKey="Kao, Yu Ying" sort="Kao, Yu Ying" uniqKey="Kao Y" first="Yu-Ying" last="Kao">Yu-Ying Kao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins (MeSH)</term>
<term>Blotting, Northern (MeSH)</term>
<term>DNA, Complementary (chemistry)</term>
<term>DNA, Complementary (genetics)</term>
<term>Darkness (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (drug effects)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Hydrolyzable Tannins (metabolism)</term>
<term>In Situ Hybridization (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phenols (metabolism)</term>
<term>Phenylalanine Ammonia-Lyase (genetics)</term>
<term>Phenylalanine Ammonia-Lyase (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Salicylic Acid (pharmacology)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Serine Endopeptidases (MeSH)</term>
<term>Stress, Mechanical (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (composition chimique)</term>
<term>ADN complémentaire (génétique)</term>
<term>Acide salicylique (pharmacologie)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Contrainte mécanique (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Hybridation in situ (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Obscurité (MeSH)</term>
<term>Phenylalanine ammonia-lyase (génétique)</term>
<term>Phenylalanine ammonia-lyase (métabolisme)</term>
<term>Phénols (métabolisme)</term>
<term>Populus (cytologie)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines d'Arabidopsis (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Serine endopeptidases (MeSH)</term>
<term>Tanins hydrolysables (métabolisme)</term>
<term>Technique de Northern (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Phenylalanine Ammonia-Lyase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hydrolyzable Tannins</term>
<term>Lignin</term>
<term>Phenols</term>
<term>Phenylalanine Ammonia-Lyase</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Salicylic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Serine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN complémentaire</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Phenylalanine ammonia-lyase</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lignine</term>
<term>Phenylalanine ammonia-lyase</term>
<term>Phénols</term>
<term>Protéines végétales</term>
<term>Tanins hydrolysables</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide salicylique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Blotting, Northern</term>
<term>Darkness</term>
<term>In Situ Hybridization</term>
<term>Molecular Sequence Data</term>
<term>Sequence Analysis, DNA</term>
<term>Stress, Mechanical</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Contrainte mécanique</term>
<term>Données de séquences moléculaires</term>
<term>Hybridation in situ</term>
<term>Obscurité</term>
<term>Protéines d'Arabidopsis</term>
<term>Serine endopeptidases</term>
<term>Technique de Northern</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Lignins, along with condensed tannins (CTs) and salicylate-derived phenolic glycosides, constitute potentially large phenylpropanoid carbon sinks in tissues of quaking aspen (Populus tremuloides Michx.). Metabolic commitment to each of these sinks varies during development and adaptation, and depends on L-phenylalanine ammonia-lyase (PAL), an enzyme catalyzing the deamination of L-phenylalanine to initiate phenylpropanoid metabolism. In Populus spp., PAL is encoded by multiple genes whose expression has been associated with lignification in primary and secondary tissues. We now report cloning two differentially expressed PAL cDNAs that exhibit distinct spatial associations with CT and lignin biosynthesis in developing shoot and root tissues of aspen. PtPAL1 was expressed in certain CT-accumulating, non-lignifying cells of stems, leaves, and roots, and the pattern of PtPAL1 expression varied coordinately with that of CT accumulation along the primary to secondary growth transition in stems. PtPAL2 was expressed in heavily lignified structural cells of shoots, but was also expressed in non-lignifying cells of root tips. Evidence of a role for Pt4CL2, encoding 4-coumarate:coenzyme A ligase, in determining CT sink strength was gained from cellular co-expression analysis with PAL1 and CTs, and from experiments in which leaf wounding increased PAL1 and 4CL2 expression as well as the relative allocation of carbon to CT with respect to phenolic glycoside, the dominant phenolic sink in aspen leaves. Leaf wounding also increased PAL2 and lignin pathway gene expression, but to a smaller extent. The absence of PAL2 in most CT-accumulating cells provides in situ support for the idea that PAL isoforms function in specific metabolic milieus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12376645</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>02</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>130</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2002</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>796-807</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Lignins, along with condensed tannins (CTs) and salicylate-derived phenolic glycosides, constitute potentially large phenylpropanoid carbon sinks in tissues of quaking aspen (Populus tremuloides Michx.). Metabolic commitment to each of these sinks varies during development and adaptation, and depends on L-phenylalanine ammonia-lyase (PAL), an enzyme catalyzing the deamination of L-phenylalanine to initiate phenylpropanoid metabolism. In Populus spp., PAL is encoded by multiple genes whose expression has been associated with lignification in primary and secondary tissues. We now report cloning two differentially expressed PAL cDNAs that exhibit distinct spatial associations with CT and lignin biosynthesis in developing shoot and root tissues of aspen. PtPAL1 was expressed in certain CT-accumulating, non-lignifying cells of stems, leaves, and roots, and the pattern of PtPAL1 expression varied coordinately with that of CT accumulation along the primary to secondary growth transition in stems. PtPAL2 was expressed in heavily lignified structural cells of shoots, but was also expressed in non-lignifying cells of root tips. Evidence of a role for Pt4CL2, encoding 4-coumarate:coenzyme A ligase, in determining CT sink strength was gained from cellular co-expression analysis with PAL1 and CTs, and from experiments in which leaf wounding increased PAL1 and 4CL2 expression as well as the relative allocation of carbon to CT with respect to phenolic glycoside, the dominant phenolic sink in aspen leaves. Leaf wounding also increased PAL2 and lignin pathway gene expression, but to a smaller extent. The absence of PAL2 in most CT-accumulating cells provides in situ support for the idea that PAL isoforms function in specific metabolic milieus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kao</LastName>
<ForeName>Yu-Ying</ForeName>
<Initials>YY</Initials>
<AffiliationInfo>
<Affiliation>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF480619</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047348">Hydrolyzable Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.3.1.24</RegistryNumber>
<NameOfSubstance UI="D010650">Phenylalanine Ammonia-Lyase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O414PZ4LPZ</RegistryNumber>
<NameOfSubstance UI="D020156">Salicylic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015152" MajorTopicYN="N">Blotting, Northern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003624" MajorTopicYN="N">Darkness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047348" MajorTopicYN="N">Hydrolyzable Tannins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010650" MajorTopicYN="N">Phenylalanine Ammonia-Lyase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020156" MajorTopicYN="N">Salicylic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12376645</ArticleId>
<ArticleId IdType="doi">10.1104/pp.006262</ArticleId>
<ArticleId IdType="pmc">PMC166607</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 1999 Mar;39(4):657-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1537-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Aug 20;457(1):47-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10486561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 3;275(9):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Sep;127(1):230-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2393-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Dec;112(4):1617-1624</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Oct;103(2):315-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Oct;9(10):1825-1841</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stain Technol. 1951 Apr;26(2):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14835025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Dec;17(6):1203-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1994 Dec;14(2-3):94-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24192872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1986 Mar;169(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24232434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1986 Feb;167(2):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24241851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1989 Apr;12(4):367-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):14486-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2760071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Jun;8(6):1641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2767049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Oct;86(20):7895-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2813366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 May;119(3):408-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Oct;95(4):495-498</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stain Technol. 1975 Sep;50(5):315-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">54955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 1994 Mar;58(3):558-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7513564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1995 Sep;28(6):1133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7548831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7597051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 Oct 1;225(1):491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7925471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Oct;23(1):135-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8106009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 May;102(1):71-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8108506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jun;3(6):835-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1995 Nov;19(5):734-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8588907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8819324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1996;200(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8987616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb;116(2):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 May;117(1):101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jul;117(3):1095-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 1998 Dec;49(8):2233-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9887524</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Kao, Yu Ying" sort="Kao, Yu Ying" uniqKey="Kao Y" first="Yu-Ying" last="Kao">Yu-Ying Kao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004603 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004603 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12376645
   |texte=   Differential expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12376645" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020